Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xin-Gang Liu,* Ya-Qing Feng, Peng Wu, Xue Chen and Fei Li

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: xingangl2002@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.037 wR factor = 0.091 Data-to-parameter ratio = 7.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-(1,3-Dioxoisoindolin-2-yl)benzaldehyde

The title compound, $C_{15}H_9NO_3$, was synthesized from phthalic anhydride and 4-aminobenzaldehyde. The dihedral angle between the planes of the phthalimide moiety and the benzene ring is 56.22 (2)°. Received 25 October 2004 Accepted 3 November 2004 Online 13 November 2004

Comment

N-Phthalyl derivatization is one of the most frequently used methods of protection in synthesis involving compounds with primary amino groups (Falck *et al.*, 1995). Phthalimides have also served as starting materials and intermediates for the syntheses of alkaloids (Couture *et al.*, 1998) and pharmacophores (Couture *et al.*, 1997). Moreover, they have cytotoxicity (Hall *et al.*, 1995) and anti-HIV activity (Van Derpoorten *et al.*, 1997). In this paper, the structure of the title compound, 4-(1,3-dioxoisoindolin-2-yl)benzaldehyde, (I), is reported (Fig. 1).

The structure of (I) comprises a conventional phthalimide unit with the benzene ring of the *p*-benzaldehyde moiety bound to the imide N atom. The phthalimide unit is effectively planar, with a mean deviation of 0.015 (2) Å. The dihedral angle between this plane and that of the benzene ring of the benzaldehyde moiety is 56.22 (3)°.

Experimental

A solution of phthalic anhydride (10 mmol) and 4-aminobenzaldehyde (10 mmol) in acetic acid (40 ml) was heated at reflux until

Printed in Great Britain - all rights reserved

© 2004 International Union of Crystallography

organic papers

the disappearance of the starting materials, as evidenced by thin-layer chromatography. The resulting yellow precipitate was filtered off and washed with a minimum amount of water to give the title compound, (I). ¹H NMR (CDCl₃, p.p.m.): 7.26–8.05 (m, 8H), 10.07 (s, 1H). Recrystallization from CHCl₃ over 12 d at ambient temperature gave colorless single crystals of (I) suitable for X-ray analysis.

Mo $K\alpha$ radiation

reflections

 $\theta = 2.4-24.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

T = 293 (2) K

Block, colorless

 $0.20 \times 0.18 \times 0.14 \text{ mm}$

Cell parameters from 1004

Crystal data

 $\begin{array}{l} C_{15}H_{9}NO_{3}\\ M_{r}=251.23\\ Orthorhombic, Pna2_{1}\\ a=7.646 \ (3)\ \text{\AA}\\ b=11.070 \ (4)\ \text{\AA}\\ c=13.815 \ (4)\ \text{\AA}\\ V=1169.3 \ (7)\ \text{\AA}^{3}\\ Z=4\\ D_{x}=1.427\ \text{Mg}\ \text{m}^{-3} \end{array}$

Data collection

1227 independent reflections
947 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.046$
$\theta_{\rm max} = 26.3^{\circ}$
$h = -9 \rightarrow 9$
$k = -11 \rightarrow 13$
$l = -17 \rightarrow 16$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0446P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	+ 0.1003P]
$wR(F^2) = 0.092$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
1227 reflections	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

In the absence of significant anomalous scattering effects, Friedel pairs in the data set were merged. H atoms were positioned geometrically, with C–H = 0.93–0.98 Å, and refined using a riding model, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm carrier})$.

Figure 2 The crystal structure of (I), viewed down the *a* axis.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

References

- Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Couture, A., Drniau, E. & Grandclaudon, P. (1998). J. Org. Chem. 63, 3128–3132.
- Couture, A., Drniau, E., Woisel, P. & Grandclaudon, P. (1997). Synthesis, 63, 1469–1445.
- Falck, J. R., Bhatt, R. K. & Ye, J. (1995). J. Am. Chem. Soc. 117, 5973.
- Hall, I. H., Wong, O. T. & Scovill, J. P. (1995). Biomed. Pharmcother. 49, 251–258.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Van Derpoorten, K., Balzarini, J., De Clercq, E. & Poupaert, J. H. (1997). Biomed. Pharmcother. 51, 464–468.